Estimating the Causal Effect of Injury on Performance

Tyrel Stokes

September 15, 2018

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 1 / 30

∃ ► < ∃ ►</p>

Oscar Klefbom: Impact of Injury on Performance?

- Missed the Last 52 Games of the 2015-2016 season
- Part-way through 2nd full season in NHL

イロト イポト イラト イラ

Estimating the Causal Effect of Injury on Perfc

Elective Surgery on the Other foot?

SeasonTOIP1/60GS/60CF%xGF%2014-201516210.480.9650.05%48.07%

Estimating the Causal Effect of Injury on Perfc

Elective Surgery on the Other foot?

Season	TOI	P1/60	GS/60	CF%	xGF%
2014-2016	1621	0.48	0.96	50.05%	48.07%
2016-2017	1405	0.77	1.44	50.37%	51.13%

Elective Surgery on the Other foot?

TOI P1/60 GS/60 CF% xGF% Season 2014-2016 1621 0.48 0.96 50.05% 48.07% 2016-2017 1405 0.77 1.44 50.37% 51.13%

Injury made him better?

Estimating the Causal Effect of Injury on Perfc

"Oscar Klefbom" Latent Performance Over Time

"Oscar Klefbom" Latent Performance Over Time

"Oscar Klefbom" Latent Performance Over Time

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 9 / 30

2

<ロ> <問> <問> < 同> < 同> 、

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 10 / 30

2

<ロ> <問> <問> < 同> < 同> 、

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 11 / 30

2

<ロ> <問> <問> < 同> < 同> 、

- Underlying Ability is relatively smooth
- Injuries typically have large local effects, small long-term effects

Problem

Regression models for Ability are noisy and typically require at least a season of data for accurate results!!!

Potential Solution

Specify a flexible performance path that allows us to borrow information from neighboring periods

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\log(L(\gamma,\sigma^2,\theta,\tau^2,\omega^2|y,x)) =$$

$$\sum_{i=1}^{I} \log(\mathbf{N}(\gamma_i^{(0)}|\mathbf{0},\omega^2)) +$$
(1)

Estimating the Causal Effect of Injury on Perfc

September 15, 2018

2

<ロ> <問> <問> < 回> < 回> 、

(2)

13/30

$$\log(L(\gamma, \sigma^2, \theta, \tau^2, \omega^2 | y, x)) =$$

$$\sum_{i=1}^{I} \log(N(\gamma_i^{(0)} | 0, \omega^2)) \qquad (3)$$

$$+ \sum_{\mathbf{t}=\mathbf{1}}^{\mathbf{T}} (\sum_{\mathbf{i} < \mathbf{j}} \sum_{\mathbf{k}=\mathbf{1}}^{\mathbf{K}_{\mathbf{ij}}^{(\mathbf{t})}} \log(\mathbf{F}(\gamma_{\mathbf{i}}^{(\mathbf{t})} - \gamma_{\mathbf{j}}^{(\mathbf{t})}, \mathbf{x}_{\mathbf{ijt}}, \beta)) \qquad (4)$$

$$+ (\mathbf{1} - \mathbf{y}_{\mathbf{ijk}}^{(\mathbf{t})}) \log(\mathbf{1} - \mathbf{F}(\gamma_{\mathbf{i}}^{(\mathbf{t})} - \gamma_{\mathbf{j}}^{(\mathbf{t})}, \mathbf{x}_{\mathbf{ijt}}, \beta))] + \qquad (5)$$

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 14 / 30

2

イロン イ理 とく ヨン イヨン

$$\log(L(\gamma, \sigma^{2}, \theta, \tau^{2}, \omega^{2}|y, x)) = \sum_{i=1}^{I} \log(N(\gamma_{i}^{(0)}|0, \omega^{2}))$$

$$+ \sum_{t=1}^{T} \sum_{i

$$+ (1 - y_{ijk}^{(t)}) \log(1 - F(\gamma_{i}^{(t)} - \gamma_{j}^{(t)}, x_{ijt}, \beta))]$$

$$+ \sum_{t=0}^{T-1} \sum_{i=1}^{I} \log(N(\gamma_{i}^{(t+1)}|\gamma_{i}^{(t)}, \sigma_{i}^{2^{(t+1)}})) +$$
(8)
(9)$$

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 15 / 30

2

イロト イヨト イヨト イヨト

$$\log(L(\gamma, \sigma^{2}, \theta, \tau^{2}, \omega^{2}|y, x)) =$$

$$\sum_{i=1}^{I} \log(N(\gamma_{i}^{(0)}|0, \omega^{2}))$$

$$+ \sum_{t=1}^{T} (\sum_{i < j} \sum_{k=1}^{K_{ij}^{(t)}} [y_{ijk}^{(t)} \log(F(\gamma_{i}^{(t)} - \gamma_{j}^{(t)}, x_{ijt}, \beta))$$

$$+ (1 - y_{ijk}^{(t)}) \log(1 - F(\gamma_{i}^{(t)} - \gamma_{j}^{(t)}, x_{ijt}, \beta))]$$

$$+ \sum_{t=0}^{T-1} \sum_{i=1}^{I} \log(N(\gamma_{i}^{(t+1)}|\gamma_{i}^{(t)}, \sigma_{i}^{2^{(t+1)}}))$$

$$+ \sum_{t=0}^{T-1} \sum_{i=1}^{I} \log(N(\log \sigma_{i}^{2^{(t+1)}}|\log \sigma_{i}^{2^{(t)}}, \tau^{2}))$$

$$(12)$$

September 15, 2018 16 / 30

Model Benefits

- Models Players as evolving with Random walk with potential for jumps
- Allows us to estimate player ability over a short period (say 1 month), without introducing too much noise.
- Similar models already in use for a variety of sports at the team level (Glickman and Stern (1998), Lopez, Matthews, and Baumer (2017))

Adaptation to modeling player ability

$F((\gamma_{i1}^{(t)} + \gamma_{i2}^{(t)} + \gamma_{i3}^{(t)} + \gamma_{i4}^{(t)} + \gamma_{i5}^{(t)}) - (\gamma_{j1}^{(t)} + \gamma_{j2}^{(t)} + \gamma_{j3}^{(t)} + \gamma_{j4}^{(t)} + \gamma_{j5}^{(t)}) - \gamma_{goalie}^{(t)}, x_{ijt}, \beta)$

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 18 / 30

First Choice

Bayesian Model: Use an MCMC Sampling Algorithm

Problem

To use full data set from 2007-2017, there will be \approx 7,000,000 rows and > 250,000 parameters (where periods \leq 6 weeks)

Second Best

Maximum A posteriori Estimation

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Maximum A posteriori Estimation

Model is *Almost Concave* Can use **Accelerated Stochastic Gradient Descent** with parameters from the constant variance model as initial values to ensure stability

不同 トイモトイモ

Maximum A posteriori Estimation Interpretation

Like Bradley-Terry with a smoothness penalty (Fahmeir and Tutz 1994)

Rewrite Likelihood

$$\begin{split} &\log(L(\gamma, \sigma^2, \theta, \tau^2, \omega^2 | y, x)) = \\ &\sum_{t=1}^{T} (\sum_{i < j} \sum_{k=1}^{K_{ij}^{(t)}} [y_{ijk}^{(t)} \log(F(\gamma_i^{(t)} - \gamma_j^{(t)}, x_{ijt}, \beta)) \\ &+ (1 - y_{ijk}^{(t)}) \log(1 - F(\gamma_i^{(t)} - \gamma_j^{(t)}, x_{ijt}, \beta))] + a(\gamma, \sigma^2) \end{split}$$

Connects the Paired Comparison Litterature with previous regularized regression work in hockey (MacDonald 2012, Schuckers and Curro 2013 etc.)

September 15, 2018 21 / 30

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results: Shots as outcome

Results: Shots as outcome

Results: Goals as outcome

Results: Goals as outcome

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 25

25 / 30

Probability above Positional Average (PAPA)

ex: Oscar Klefbom (LD)

PAPA for LD

$$\frac{1}{N} \sum_{i=1}^{T} \sum_{i < j} \sum_{k=1}^{K_{ij}^{(t)}} (E[F(\gamma_{i^*}^{(t)} + \gamma_{\mathbf{i_{-iLD}}}' + \gamma_{\mathbf{j}}' + \theta)] - E[F(\gamma_{\mathbf{i}'} + \gamma_{\mathbf{j}}' + \theta)])$$

$$\begin{aligned} \gamma_{i'} &= (\gamma_{i1}^{(t)} + \gamma_{i2}^{(t)} + \gamma_{i3}^{(t)} + \gamma_{i4}^{(t)} + \gamma_{i5}^{(t)}) \\ \gamma_{j'} &= (\gamma_{j1}^{(t)} + \gamma_{j2}^{(t)} + \gamma_{j3}^{(t)} + \gamma_{j4}^{(t)} + \gamma_{j5}^{(t)}) \\ \theta &= \gamma_{aoalie}^{(t)} + x_{ijt}\beta \end{aligned}$$

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 26 / 30

3

Causal Approach Multivariate Regression

Estimating the Causal Effect of Injury on Perfc

September 15, 2018

27/30

Future Work

- Connection between SSM and rating schemes, i.e elo, glicko, glicko 2 etc
- Can we use connection to test our dynamic specification?
- How to model the inherited state independent of players?
- Model hierarchy, multivariate extensions, team structure etc.
- R package (eta: eventually)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Corsica Hockey
- Man-Games Lost

Tyrel Stokes

Estimating the Causal Effect of Injury on Perfc

September 15, 2018 29 / 30

æ

イロト イヨト イヨト イヨト

References

Aldous, David, and others. 2017. "Elo Ratings and the Sports Model: A Neglected Topic in Applied Probability?" *Statistical Science* 32 (4). Institute of Mathematical Statistics: 616–29.

Fahrmeir, Ludwig, and Gerhard Tutz. 1994. "Dynamic Stochastic Models for Time-Dependent Ordered Paired Comparison Systems." *Journal of the American Statistical Association* 89 (428). Taylor & Francis: 1438–49.

Glickman, Mark E. 1999. "Parameter Estimation in Large Dynamic Paired Comparison Experiments." Journal of the Royal Statistical Society: Series C (Applied Statistics) 48 (3). Wiley Online Library: 377–94.

———. 2001. "Dynamic Paired Comparison Models with Stochastic Variances." *Journal of Applied Statistics* 28 (6). Taylor & Francis: 673–89.

Glickman, Mark E, and Hal S Stern. 1998. "A State-Space Model for National Football League Scores." Journal of the American Statistical Association 93 (441). Taylor & Francis: 25–35.

Király, Franz J, and Zhaozhi Qian. 2017. "Modelling Competitive Sports: Bradley-Terry-\'{E} L\H {O} Models for Supervised and on-Line Learning of Paired Competition Outcomes." arXiv Preprint arXiv:1701.08055.

Lopez, Michael J, Gregory J Matthews, and Benjamin S Baumer. 2017. "How Often Does the Best Team Win? A Unified Approach to Understanding Randomness in North American Sport." arXiv Preprint arXiv:1701.05976.

3

(日)