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1 Introduction

A player possessing the puck, no matter their position on the ice, has three possible actions
available to them: shoot the puck, skate with the puck, or pass the puck to another player,
successfully or not. Much of public analytics work to date has focused on the first choice,
creating models that focus on shots and goals, and evaluating players and teams based on
those results. However, there has been comparatively less research on passing and skating.
Corey Sznadjer’s microstats and Ryan Stimson’s Passing Project have given some insight
into neutral zone play and passes leading to shots, respectively. However, the Big Data
Cup’s comprehensive location data for all on-puck events provides an immense opportunity
to build on that research and refine our understanding and valuation of passing and skating.

One approach to do so is an expected threat model, a model that assigns value to on-
puck events based on the location-based value the event generates. Location-based expected
threat models in hockey (Forstner, 2020) and soccer (Singh, 2019) have been implemented
successfully and can address a central question that one would like to ask of the dataset:
given only a 40-game season, how can a team properly evaluate a prospect’s contributions,
development, and potential? Our paper will explore one answer to that question by im-
plementing and contextualizing an expected threat model on non-shooting on-puck actions;
that is, passes (completed and failed), and skating with the puck.

2 Building the Threat Model

2.1 Model Methodology

Following the methods of Singh and Forstner, we divide the rink into h vertical zones and k
horizontal zones; these were empirically chosen as h = 17 and k = 40, making each zone 5
feet by 5 feet. We then define the expected total threat, xTT , of a zone (x, y) on the ice by:

xTT (x, y) =
(
p(S(x,y)) · p(G(x,y))

)
+

p(M(x,y)) ·
∑
(i,j)

T(x,y)→(i,j) · xTT (i, j)


−

p(L(x,y)) ·
∑
(i,j)

T(x,y)→(i,j) · xTT (i, j)∗

 .

Let’s break down this three-part formula.

The first component, p(S(x,y)) · p(G(x,y), describes the “shot value” of a zone; it is the proba-
bility p(S(x,y)) of shooting from a zone (x, y), weighted by the probability p(G(x,y)) of scoring
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from that zone.

The second term describes the “move value” of a zone, whether due to passing or skating. If
a player is in a zone (x, y), we calculate the probability that they move to some other zone
(i, j), and multiply this by the xTT generated at (i, j); summing this quantity over all zones
on the rink and weighting by the overall probability p(M(x,y)) of moving from (x, y) gives
the expected value of moving.

Finally, the third term defines the “loss value” of a zone: when a player loses the puck
(whether it is stolen at that position or given up by failing a pass), the puck is recovered by
the other team at some position (i, j). The product of the probability that it is recovered
there and the xTT of that zone’s mirror across the center-ice faceoff dot, (i, j)∗, is summed
over all zones on the ice to represent the threat gained by the opposing team; we then weight
by the probability p(L(x,y)) of turning over the puck at (x, y) to compute the negative value
of a zone. This “loss value” was not part of Singh’s original implementation of xT for soccer;
to acknowledge these negative values, we call our model xTT , expected total threat.

In the equation describing xTT , the move term and the loss term are both dependent on the
value of all other zones. Without any preliminary values for xTT , we recursively generate it,
first defining the xTT of each zone to be 0. Thus, for the first iteration of our xTT model,
our equation simplifies to the ”shot value” term, a naive way to describe expected goals.

With those values generated, we can then run our model until sufficient convergence is
achieved, using the prior iteration’s xTT values to define the xTT of the current iteration.
Thus, after, say, three iterations, the xTT of a given zone is equivalent to the expected net
probability of scoring versus being scored on over the next three actions originating from
that zone. Singh and Forstner both empirically found that their model converged after five
iterations, and we found the same.

Figure 1: The xTT of every 5x5 zone
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2.2 Model Issues

One of the features of an expected threat model is that it is a Markov model: future states
of the model depend only on the present state and not on any past states. This memoryless
feature is incredibly useful: it allows one to calculate an objective numerical value of each
event, based on the information contained in a given dataset, without requiring further con-
text. But that is also the downside—xTT treats each event (pass, shoot, skate) as entirely
independent of one another. In a team sport like hockey this is of course not the case. To
see where xTT stumbles, consider this sequence in the Chicago Blackhawks vs. Columbus
Blue Jackets game from February 25th, 2021.

The play begins as Janmark (13) picks up the puck behind the Blackhawks’ net. Janmark
carries the puck from there up towards the blue line—an event that generates a positive
xTT—but then notices a Columbus defender, and begins to circle back. With Kane (88)
streaking into the neutral zone, Janmark looks for him, is unable to find an easy pass, and so
sends the puck to de Haan (44) near the left side of the Blackhawks’ net. De Haan attempts
a pass to DeBrincat (12) near the Columbus blue line, but the pass is blocked by a Columbus
defender, before being recovered by Kane, who walks into the offensive zone and snipes the
puck past Korpisalo to open the game’s scoring.

One way to analyze this possession would be to assign each individual the sum of the xTT
generated by all of their individual actions. But this approach fails to fully account for the
context of the possession. In the case of Janmark, the xTT of his pass is actually negative,
moving from a very low (positive) threat to a negative threat, suggesting that, on average,
the pass is putting the team in a more vulnerable position and more likely to lead to a goal
against rather than a goal for. But in the context of this sequence, we can see that this
was certainly not the case. Janmark merits credit for a sharp decision to set up de Haan’s
stretch pass, which led to Kane’s carry and goal. So, how can we account for this complicated
balance?

3 xTT Chain

3.1 Introduction

Our solution to this problem is what we call xTT Chain. We begin by defining a possession
as any number of consecutive events where one team controls the puck. xTT Chain attempts
to account for the context of a play by evenly weighting an individual’s contributions (which
may be negative) with that individual’s share of the total xTT generated by that possession,
provided the player’s contributions advance a possession via a pass. Those players who are
part of a possession but do not pass the puck (e.g., receive or recover the puck and then turn
it over, receive the puck and then shoot) are assigned an xTT Chain that is simply equal to
their personal contribution (discussed further below). Thus, even if an individual’s actions
do not have a positive xTT , they can still provide a valuable contribution to a possession
where the overall threat increases; in the example sequence, Janmark would receive credit for
the overall advancement of the possession, in addition to his carry’s personal contribution.
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3.2 Derivation

An passing player’s xTT Chain from a possession involving N passing players is given by

1

2

(
∆xTT

N
+ xTTP

)
,

where xTTP is an individual’s personal contribution, calculated by summing the change in
xTT over each individual event (passes, carries, puck recoveries, and turnovers). The per-
sonal xTT contributed by a carry or a pass is (as described above) the difference between
start and end points. The personal xTT associated with an incomplete pass is the negative
xTT of the zone where the puck was passed from, and the personal xTT associated with a
recovery or takeaway is the xTT of the position where the puck was recovered. For a failed
pass or turnover by team A, the xTT is the negative of the sum of team B’s xTT where
team B obtains the puck and team A’s xTT at the passing/turnover position. Moreover,
∆xTT is the total change in xTT over the course of the possession; that is, the difference in
xTT between start and end points of the possessing team.

With these definitions in place, we can compute the combined xTT of the N passing players.
To do so, suppose that the jth player makes an incomplete pass, which the j + 1 player
recovers. Additionally, let xTTi represent the xTT at the point where the ith player receives
the puck (xTT1 being the xTT zone where the first player starts with the puck). Then the
sum of the individual xTT Chains is

ΣxTTChain =
N∑
i=1

1

2

(
∆xTT

N
+ xTTPi

)

=
1

2

N∑
i=1

∆xTT

N
+

1

2

[
j−1∑
i=1

(xTTi+1 − xTTi) − xTTj + xTTj+1 +
N∑

i=j+1

(xTTi+1 − xTTi)

]

=
∆xTT

2
+

1

2

N∑
i=1

(xTTi+1 − xTTi)

=
∆xTT

2
+

xTTN+1 − xTT1

2

=
∆xTT

2
+

∆xTT

2
= ∆xTT.

This computation extends to possessions with any number of incomplete passes and recover-
ies. The crux is that an incomplete-recovery pair is equivalent to a pass from the incomplete
position (xTT1) to a toss-up between the teams (xTT of 0) then followed by the recovery
(xTT2), and so we find that the change in xTT of that incompletion-recovery play is simply
the change in xTT for an equivalent pass. Thus, we find that the sum of personal contri-
butions is half of ∆xTT. As a result, the sum of the individual xTT Chains for a given
possession is just the net xTT of the possession itself.

4



After calculating each player’s xTT Chain for 5-on-5 possessions, we then divided their
numbers by the number of games they appeared in to better compare their on-ice impact.
We chose to normalize our values based on something that’s not events or possessions;
without ice time values, we decided to weight by games played. From there, we restricted
our analysis to players who had played more than one game; since there are only seven teams
with more than two games played in the dataset, we felt that doing so was the best way to
balance a thorough analysis with a very limited sample.

3.3 Results, Conclusions & Insights

Below are the top 10 players from the scouting dataset by xTT Chain per game, subject to
the minimum-game restriction:

Team Player xTT Chain Per Game
1 Windsor Spitfires Egor Afanasyev 0.5256
2 Flint Firebirds Yevgeni Oksentyuk 0.4985
3 Kitchener Rangers Donovan Sebrango 0.4773
4 London Knights Liam Foudy 0.4501
5 Hamilton Bulldogs Arthur Kaliyev 0.4015
6 London Knights Kirill Steklov 0.3961
7 Flint Firebirds Vladislav Kolyachonok 0.3952
8 Mississauga Steelheads Keean Washkurak 0.3738
9 London Knights Nathan Dunkley 0.3672
10 Flint Firebirds/Barrie Colts Tyler Tucker 0.3642

Notably, eight of these players have been drafted by NHL teams, including five of those
eight within the first three rounds. Clearly there is some correlation between NHL scouts’
perception of players’ offensive skill and our numerical analysis of these players’ offensive
value.

There are three major action points from our results. Firstly, while many of these prospects
have already been drafted, there are a number of players in the dataset (including two of
the top ten) who were undrafted or are currently draft-eligible. NHL teams have a limited
amount of time to analyze prospects, and especially with a shortened season, combining
traditional in-person or video-based scouting along with applications of Stathletes’ compre-
hensive data in metrics like xTT Chain can help teams gain a fuller understanding of the
numerical value of players’ offensive contributions. With both video and numerical evidence
to guide them, teams can find prospects whose offensive value may not be captured in tra-
ditional counting statistics.

Secondly, xTT Chain as a concept and a measure easily transfers to other hockey leagues.
Forstner showed that an xTT model can be built to analyze the offensive value of players in
the NHL, and teams looking to target offensive play-drivers in trades can utilize xTT Chain
to find players whose offensive value is not necessarily captured in other shot-based metrics,
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or who are held back by their linemates.

Finally, the combination of personal contributions and team contributions to xTT Chain
means that analysis of where a player’s xTT comes from (whether via individualistic play or
by working passing plays with their teammates to generate threat) can identify potential line
combinations or team makeups to maximize offensive threat. Since xTT Chain measures
the value of all on-puck non-shooting events regardless of location, it can easily be combined
with shot-based metrics to paint a full picture of players’ value added across all areas when
they control the puck. Two potential areas of research include exploring the value added by
specific tactics for breakouts, or building a xTT model to define the numeric values of power
play or penalty kill structures.

4 Sources of Uncertainty & Next Steps

We wish to acknowledge the three largest sources of uncertainty that we ran into when build-
ing the xTT model and in our design of xTT Chain. This is not a comprehensive list, but
understanding the inherent limitations of our work is crucial to the interpretation and re-
liability of our results, and to any future research on the contextualization of expected threat.

Firstly, and most importantly, is the small number of goals from the scouting dataset that
account for the entirety of the first iteration. This impacts our xTT model greatly, as if a
zone has no goals scored in it, its first-iteration xTT is significantly reduced (as seen in the
asymmetry of our heatmap). We considered two things to fix this: first, utilizing goal loca-
tion data from the NHL to calculate the values of these zones in the first iteration; second,
utilizing logistic regression based on our dataset to find the probability of scoring from a zone
based on the distance and angle to the goal. We chose not to incorporate the NHL data,
believing that the differing skill level would mean less applicable results. We also wanted to
utilize logistic regression, but did not have enough time to incorporate it for our final paper.
However, if time permits in the future, we will update our model to include this.

Secondly, there were also a number of zones that simply had no events occur in them. We
believe this to simply be a function of the small dataset, and because no events occur in
them, it doesn’t impact the model directly. However, if this model were applied to a larger
dataset, our results and the xTT values of all zones will necessarily be adjusted as events
occur in those unused zones. (The beauty of the xTT model is that nothing has to change
to handle a different dataset—one can simply rerun the numbers with the new data.)

Finally, our last source of uncertainty comes from the normalization of our xTT Chain
values. Without the data to find each player’s time on ice, it is impossible to calculate their
true normalized xTT Chain, both as a percentage of on-ice xTT Chain or per-60 minutes.
Adjusting to per-game values is a step in the right direction, but to truly compare players’
xTT Chain values to each other, they should ideally either be compared based on their share
of on-ice xTT Chain or their per-60 values, as weighting per-game gives unequal benefits to
players who accumulate more minutes in a first-line or top-pairing role.
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5 Appendix

5.1 Acknowledgments

We would like to thank everyone at Stathletes for working diligently to make this dataset
public and for creating this competition. Furthermore, we owe a prodigious amount of
gratitude to Sam Forstner, for taking the time to answer so many of our questions as we
built our model, and to Ian Anderson and Brian Macdonald who met with us through the
HANIC office hours and helped guide our development of the xTT model. We also would
like to recognize Karun Singh for his original implementation and thorough explanation of
xT in soccer; our work would have been impossible without the foundation he built. Lastly,
and most importantly, we would like to thank Chris van Benthuysen of the Latin School of
Chicago, for all he does to encourage learning and the love of mathematics for all students.
Mr. Van has been an invaluable resource for both of us in our development as students
and mathematicians, and his guidance throughout the past six years in all matters has been
invaluable. We wish him only the best honey mustard sauce and without his trademark
van-gents neither of us would have found nearly the same level of love for math.

5.2 Code, Results, & Figures

All code and figures for this project can be found at https://github.com/mhurley4/

BigDataCup.

5.3 References

Karun Singh’s original implementation of xT for soccer can be found here.

A contextualization of xT and a critical study of its features and flaws in soccer that in-
formed our creation of xTT Chain can be found here.

Sam Forstner’s implementation of xT in hockey is courtesy of the ISOL-HAC (2020) confer-
ence, his presentation begins at the 42:21 mark of this video.
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