Design weighted Regression Adjusted Plus – Minus (D-WRAP-M) for Evaluation of Player Impact

Introduction / Abstract

Background

- Evaluating players usually relies on game statistics. For instance, a better player score and assist more and make a number of intercepts.
- However, misleading method in interactive sports where every member of a team moves simultaneously and interact frequently.
- Generally, resolved by Plus-Minus: assign +1/0/-1 to represent players during each play.

Goal

- Extend the idea of Plus Minus by assigning different values for two-way THoR design matrix according to the location of the events and the positions of the players.
- Allow forward players more impact in offensive zone as well as allowing defence players more impact in defensive zone.
- Take THoR(NP20) and Fenwick(1/-1) as responses
- Use ridge regression and alter lambda values to increase the accuracy and estimate model parameters.
- Consider the performance via mean squared error($\hat{\sigma}_{\varepsilon}$), Predicted Root Squared Error($\tilde{\sigma}_{\varepsilon}$), and the correlation between players' coefficients.

Plus – Minus (RAPM)

- Plus Minus constructs a model according to player's presence.
- RAPM was first publicly introduced by Rosenbaum for basketball though he suggests that Sagarin and Winston had already developed a similar system. Rosenbaum used a formulation where a single parameter is used to assess the impact of a player.

$$x_{ij} = \begin{cases} -1\\ 0,\\ +1, \end{cases}$$

if player *j* is on the ice for the Away team for event *i* if player j is not on the ice for event *i*, and if player *j* is on the ice for the Home team for event *i*

 $Response = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_K x_K + x_{i1} + \dots + x_{iK} + e$

where b_k indicates the impact of player $k \in \{1, ..., K\}$ and X_k indicates the presence of player k.

Method to Assess the Model

1. Root Mean Squared Error: $\hat{\sigma}_{e}$

- Construct D-WRAP-M model.
- With the model, assess prediction accuracy of the response within sample.

2. Predicted Root Mean Squared Error: $\tilde{\sigma}_e$

- Split the season into half: The first and second half.
- Construct D-WRAP-M model with the first half.
- Apply the model to the second half to predict the response out-of-sample.

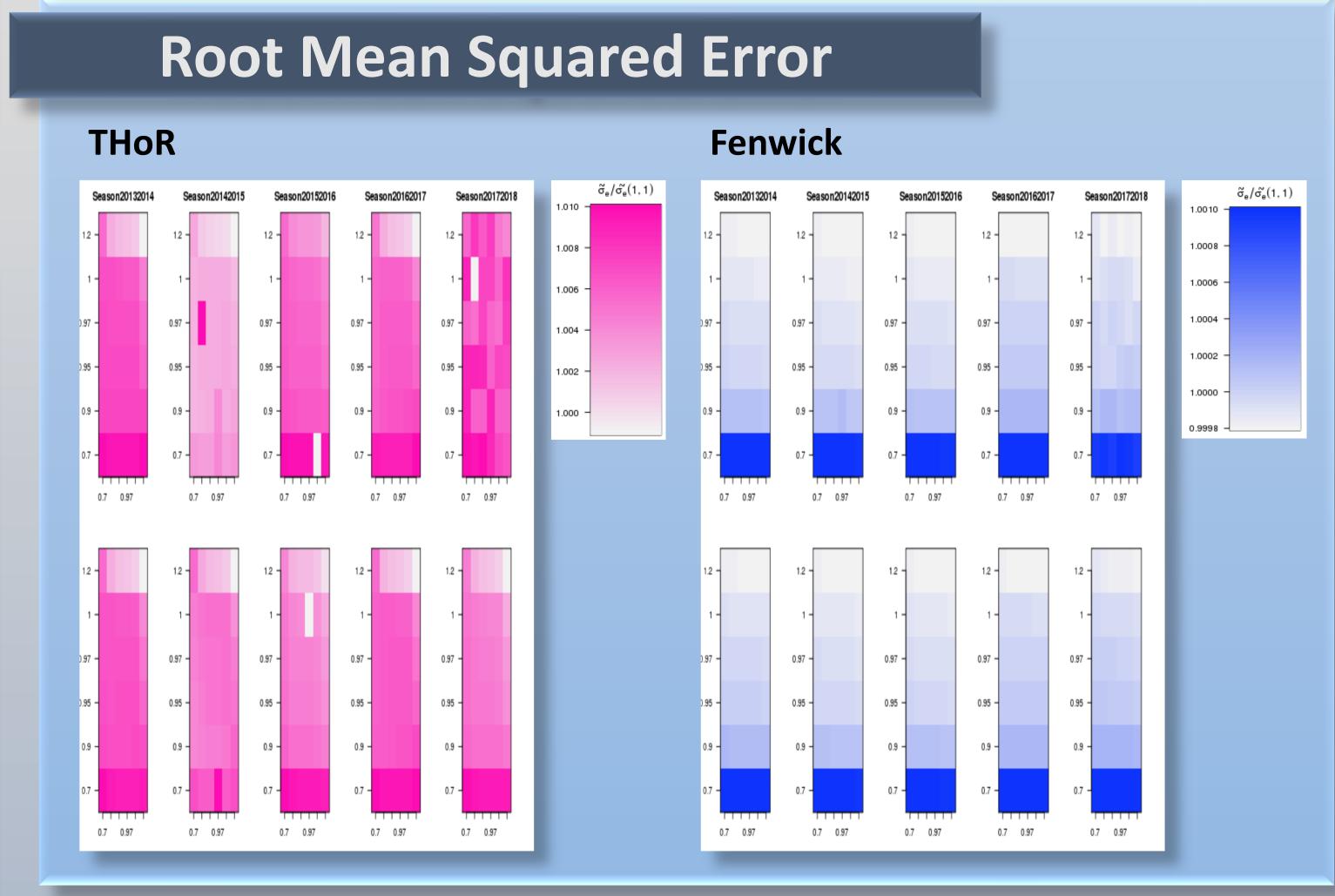
3. Correlation of players' coefficients throughout Seasons.

- Construct D-WRAP-M model and compute the players' coefficients
- Check the correlation of players' evaluation between Year T and Year T + 1 to see if the model is consistent throughout the seasons. (T ={2013, 2014, 2015, 2016, 2017}

Design weighted Regression Adjusted Plus – Minus (D-WRAP-M)

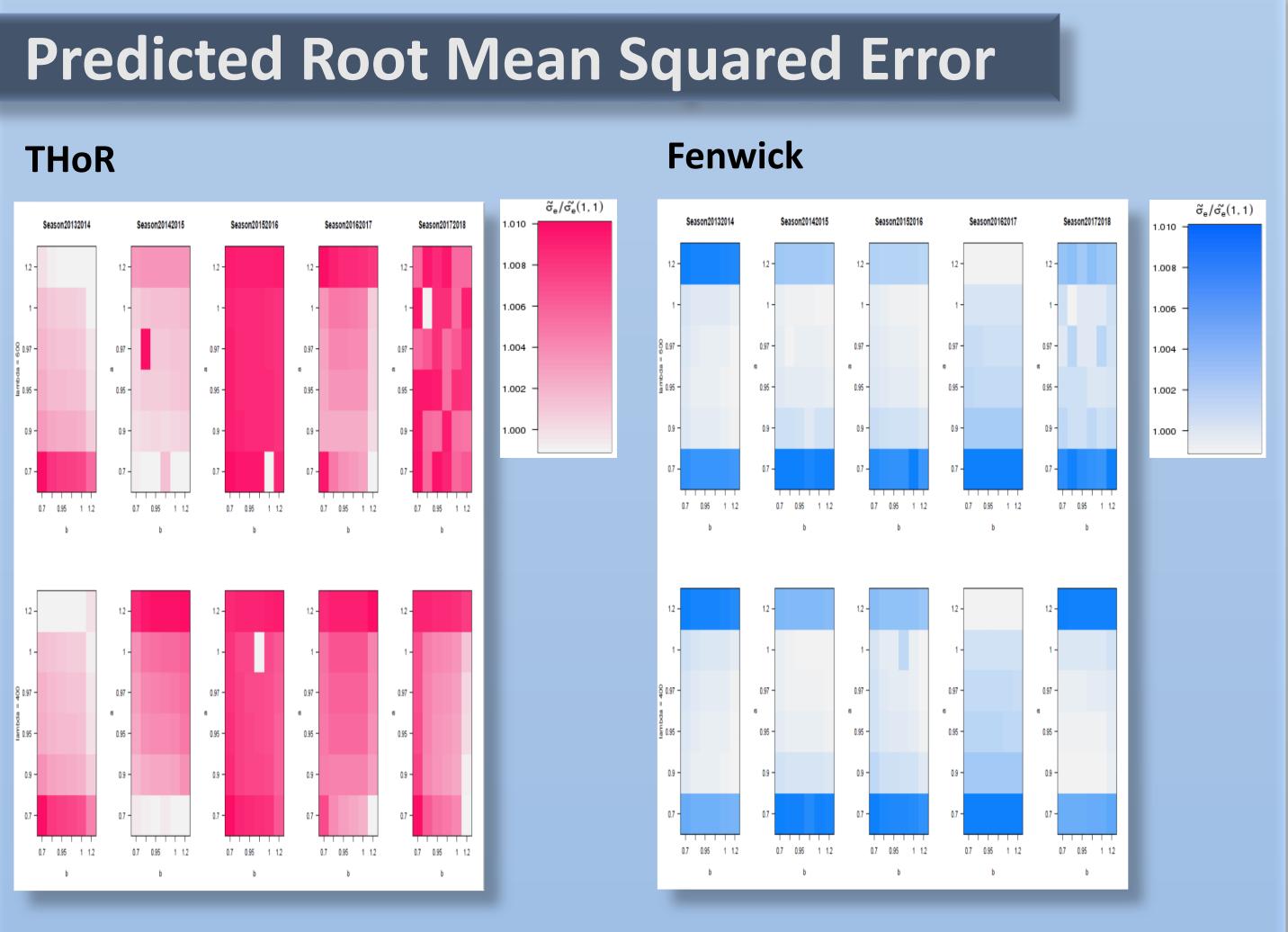
Extending the idea for Plus – Minus, we manipulate what is assigned to players according to their positions and the location of the events. As given below, we change -1/0/+1 to signed measure of distance from an event. We assess the model with different combinations of a and b to find the best fitting model.

$$g_{ij} = \begin{cases} \gamma_{ij} = a, \\ \gamma_{ij} = (5 - 2b)/3, \\ 0, \\ \gamma_{ij} = b, \\ \gamma_{ij} = (5 - 3a)/2, \end{cases}$$


Response = $b_0 + b_1g_1 + b_2g_2 + ... + b_Kg_K + g_{i1} + ... + g_{iK} + e$

where b_k indicates the effect of player k and g_k indicates the presence as well as the weighted performance of player k. T_i indicates the position of a player i and S_i indicates the location of an event j. Small weighted value of g indicates greater impact.

Model Building Factors (Other / Covariates)


- The model also includes Home ice effect, rink, goalies, where a shift starts, score differential, score differential in the 3rd period
- Players are not weighted when the event is in neutral zone
- Responses considered: Indicator of Unblocked Shot Attempted (Fenwick), Net Goal Probability (THoR)
- Values considered: a, $b \in \{0.7, 0.9, 0.95, 0.97, 1, 1.2\}$
- Seasons: 2013-2014 to 2017-2018
- (1230+ games each season, 200,000 plays at even strength, 1000 players)
- Shrinkage Lambda Value considered: $\lambda 400$, 600

Assessments

if player *i* of $T_i = Off$ is on the home team, on the ice for event *j* and $S_i = T_i$ if player *i* of $T_i = Off$ is on the home team, on the ice for event *j* and $S_i \neq T_i$ if player *i* is not on the ice for event *j* if player *i* of $T_i = Def$ is on the home team, on the ice for event *j* and $S_i = T_i$ if player *i* of $T_i = Def$ is on the home team, on the ice for event *j* and $S_i \neq T_i$

Correlation between Players

- is less than 0.1.
- is less than 0.05

original Plus – Minus.

- showing not much improvement.

Engelman, J. (2015). Estimating a player's influence on his teammates' boxscore statistics using a modified rapm framework.https://www.youtube.com/watch?v=OuCOYZTADcE. Accessed April 18, 2018. Engelman, J. (2017). Possession-based player performance analysis in basketball (adjusted +/- and related concepts). In Albert, J., Glickman, M. E., Swartz, T. B., and Koning, R. H., editors, Handbook of Statistical Methods and Analyses in Sports. Chapman and Hall/CRC. Ilardi, S. (2007). Adjusted plus-minus: An idea whose time has come. http://www.82games.com/ilardi1.htm. Accessed April 18, 2018. Ilardi, S. and Barzilai, A. (2007). Adjusted plus-minus ratings: New and improved for 2007-2008. http://www.82games.com/ilardi2.htm. Accessed April 18, 2018. Kasan, S. (2008). Off-ice officials are a fourth team at every game. http://www.nhl.com/ice/news.htm?id= 388400. Accessed September 24,2013. Macdonald, B. (2011). A regression-based adjusted plus-minus statistic for nhl players. Journal of Quantitative Analysis in Sports, 7. Macdonald, B., Lennon, C., and Sturdivant, R. (2012). Evaluating nhl goalies, skaters, and teams using weighted shots. http://arxiv.org/abs/1205.1746. Accessed October 24, 2015.

Rosenbaum, D. T. (2004). Measuring how nba players help their teams win. http://www.82games.com/ comm30.htm. Accessed April 18, 2018. Schuckers, M. and Curro, J. (2013). Total Hockey Rating (THoR): A comprehensive statistical rating of National Hockey League forwards and defensemen based upon all on-ice events. Proceedings of the 2013 MIT Sloan Sports Analytics Conference http://www.statsportsconsulting.com/thor. Sill, J. (2010). Improved nba adjusted +/- using regularization and out-of- sample testing. 2010 MIT Sloan Sports Analytics Conference.

Seongwon Im Michael Schuckers Brian MacDonald Jesse McNulty

As for THoR, the correlations between players vary from 0.1 to 0.4. The difference of correlation between the original RAPM and D-WRAP-M

As for Fenwick, the correlations between players vary from 0.4 to 0.6. The difference of correlation between the original RAPM and D-WRAP-M

Assigning a and b values did not have much impact on the correlation.

Conclusion

• Assigning a and b did not show any improvement in outcome compared to

• The ratio of Root Mean Squared Error between original RAPM and D-WRAP-M is extremely close to 1, which indicates that there is no significant difference. • Similarly, the ratio of Predicted Root Mean Squared Error is close to 1, again

• Lastly, the slight shift of correlation between players shows the same result. • The original plus – minus performs as well as D-WRAP-M.

Worth considering applying to other sports such as soccer and football.

Tracking data may allow for better value of g_{ik} and yield better performance.

References