A Look at Sports Hockey Analytics

Michael Schuckers

St. Lawrence University Statistical Sports Consulting, LLC schuckers@stlawu.edu @SchuckersM @EmpiricalSports

November 14, 2014

Introduction Rink Effects Player Evaluation

Hockey Analytics (©2014 Michael Schuckers)

Analytics

What the heck is analytics?

- IBM: discover what is happening, determine why it is happening, predict what is likely to happen and prescribe the best action to take
- INFORMS: Analytics is defined as the scientific process of transforming data into insight for making better decisions.
- OXFORD DICTIONARY: The systematic computational analysis of data or statistics
- SCHUCKERS: less scary word for statistics

Hockey Analytics lichael Schuckers

Analytics and Statistics

Sports Analytics is statistical with emphasize of the importance of:

- Reliability: Is it repeatable?
- Validity: Does it correlate with Winning?

lockey Analytics

Michael Schuckers

Distinguishing Features

- Very fluid (think basketball, soccer)
- Players on ice for short bursts (50 seconds)
- Penalties result in team being without a players for length of penalty (but can return)
- OT played different than rest of the game (4v4)
- Tie at end of OT in regular season ends in shootout

lockey Analytics

Michael Schuckers

Terms

- Even Strength(EV) : Both teams 5 players on ice
- Power Play(PP): When you have more players on the ice than your opponent
- Shorthanded(SH) : When you have fewer players on the ice than your opponent
- Offensive Zone (O-zone): Third of the ice closest to opponent goalie
- Defensive Zone (D-zone): Third of the ice closest to own goalie
- Neutral Zone (N-zone): Center third of the ice

Terms

Points:

Teams, Points = 2 for W, 1 for OT L, 0 for Reg Loss Players, Points =1 for Goal or Assist SV% is Save Percentage and is percentage of shots faced

that are not goals

SH% is Shooting Percentage and is percentage of shots taken that are goals

RTSS is NHL's Real Time Scoring System which records events, their location, who is on the ice, etc. SHOT, MISS, HIT, BLOCK, FACEOFF, GIVE, TAKE, STOP, etc. Michael Schuckers

Goal Differential vs Points

NHL GD vs Pts, 2005-6 to 2011-12

$\hat{Pts} = 91.6 + 0.33 (GoalDiff)$ Correlation =0.94 Hockey Analytics (©2014 Michael Schuckers)

7

Hockey Analytics

Michael Schuckers

Introduction Rink Effects

Player Evaluation

What's a Goal Worth

In Wins $\hat{Pts} = 91.6 + 0.33 \text{ GoalDiff}(\text{GD})$ $0.33 \rightarrow +1 \text{ GD} = 1/3 \text{ pt}$ 3GD's = 1pt6 GD's = 2pts = 1 win

In Dollars
Slope = (59.4-12.6)/(91-52) = \$1.2MM/point
\$0.4MM/Goal, \$2.4MM/Win
(Done in 2010/11, likely more \$\$\$)
Source: http://www.arcticicehockey.com/2011/10/
12/2482642/how-much-do-wins-cost

lockey Analytics

Michael Schuckers

ockey Analytics ichael Schuckers

Introduction Rink Effects Player Evaluation

Corsi # = Goals +Shots + Missed Shots + Blocked Shots Corsi % = Corsi For/(Corsi For + Corsi Against)

Fenwick # = Goals + Shots + Missed Shots
Fenwick % = Fenwick For/(Fenwick For + Fenwick Against)

Michael Schuckers Introduction Rink Effects Player Evaluation

ES Team Corsi % and Fenwick % correlate highly with future win percentage, future goal scoring rates

Corsi # and Fenwick # correlate with Scoring Chances #

Also proxies for possession

Binary Game

Hockey is an binomial, np, game

- n is number of shots for
- m is number of shots against
- p is probability of shot is goal for
- r is probability of shot is goal against

Goal Differential =

 $n_{EV}p_{EV} + n_{PP}p_{PP} + n_{PK}p_{PK} - m_{EV}r_{EV} - m_{PP}r_{PP} - m_{PK}r_{PK}$ Two parts: n's and p's

- Corsi & Fenwick drive n
- Can we drive up p_? (and drive down r_?)

Michael Schucker

Player Evaluation

Average Shot Quality

Big Debate:

- Define Shot Quality as Mean SH%
- Shot Quality matters some or very, very little
- Positions Matter: Defensemen, Forwards
- Team SH% tends to regress to league average
- Individual SH% regress to position average but more slowly (and in some cases Stamkos, Crosby not at all)

lockey Analytics

Michael Schuckers

Adjusted Save Pct.

Schuckers' Defense Independent Goalie Rating (DIGR) SV% is function of two things: Goalie Ability Shots Distribution Faced

$$SV\% = \int P_g(x, y, t, s \dots) S_g(x, y, t, s \dots) dx, dy, dt, ds \dots$$

where P_g is the performance of the goalie at s, x, y, t, ... S_g is the Shot distribution (pdf) at s, x, y, t, ... lockey Analytics

Michael Schuckers

Adjusted Save Pct

Michael Schuckers Introduction Rink Effects Player Evaluation

Aver.GoalieSV% =
$$\int \bar{P}(x, y, t, s...)S_g(x, y, t, s, ...)dx, dy, dt, ds...$$

ShotNeutralSV% =
$$\int P_g(x, y, t, s...)\overline{S}(x, y, t, s...)dx, dy, dt, ds...$$

$$DIGR = \int \hat{P}_{g}(x, y, t, s) \bar{S}(x, y, t, s...) dx, dy, dt, ds$$

where DIGR is Defense Independent Goalie Rating (Schuckers, 2011) There are issues with NHL Data (x,y)'s

Hockey Analytics (©2014 Michael Schuckers)

RTSS Data

Timer

lockey Analytics

Michael Schuckers

Introduction

Effects

OTTAWA SENATORS

Game 16 Away Game 8

Play By Play

Thursday, November 13, 2014 Attendance 16,839 at Rexall Place Start 7:43 MST; End 10:18 MST Game 0240 Final

EDMONTON OILERS Game 17 Home Game 9

Per S	tr Elapsed Game	Event	Description	OTT On Ice EDM On Ice
1	0:00 20:00	PSTR	Period Start- Local time: 7:43 MST	27 68 61 4 65 41 23 27 6 19 22 30 C C R D D G C C L D D G
1 E	V 0:00 20:00	FAC	OTT won Neu. Zone - OTT #27 LAZAR vs EDM #27 GORDON	27 68 61 4 65 41 23 27 6 19 22 30 C C R D D G C C L D D G
1	0:08 19:54	STOP	OFFSIDE	27 68 61 4 65 41 23 27 6 19 22 30 C C R D D G C C L D D G
1 E	V 0:08 19:54	FAC	OTT won Neu. Zone - OTT #27 LAZAR vs EDM #27 GORDON	27 68 61 4 65 41 23 27 6 19 22 30 C C R D D G C C L D D G
1 E	V 0:34 19:26	HIT	OTT #88 HOFFMAN HIT EDM #22 AULIE, Off. Zone	27 68 61 4 65 41 23 27 6 19 22 30 C C R D D G C C L D D G
1 E	V 0:48 19:14	SHOT	EDM ONGOAL - #14 EBERLE, Snap, Off. Zone, 44 ft.	93 6 9 4 5 41 14 93 67 2 21 30 C R L D D G C C L D D G
1 E	V 1:09 18:51	HIT	EDM #21 FERENCE HIT OTT #93 ZIBANEJAD, Def. Zone	93 6 9 2 5 41 14 93 67 2 21 30 C R L D D G C C L D D G
1 E	V 1:11 18:49	SHOT	OTT ONGOAL - #9 MICHALEK, Backhand, Off. Zone, 20 ft.	93 6 9 2 5 41 14 93 67 2 21 30 C R L D D G C C L D D G
1	1:12 18:48	STOP	PUCK FROZEN	93 6 9 2 5 41 14 93 67 2 21 30 C R L D D G C C L D D G
0 1 E	V 1:12 18:48	FAC	EDM won Def. Zone - OTT #7 TURRIS vs EDM #27 GORDON	7 90 16 4 65 41 23 27 6 5 86 30 C R L D D G C C L D D G
1 1 E	V 1:43 18:17	HIT	EDM #23 HENDRICKS HIT OTT #7 TURRIS, Neu. Zone	7 90 16 4 65 41 23 27 6 5 86 30 C R L D D G C C L D D G
				7 A5 45 A5 74 44 55 A7 A 5 A5 A5

source:

_

_

1

http://www.nhl.com/scores/htmlreports/20142015/PL020240.HTM Hockey Analytics (©2014 Michael Schuckers)

Data Issues

There are issues with NHL Data (x,y)'s

- Data from NHL's RTSS feed has significant issues x,y coordinates often far from ground truth (video analysis) especially in certain rinks (MSG)
- Home bias in Giveways vs Takeaways
- HITS inconsistent Rink to Rink, etc.
- Count totals for EVENTS need additional quality control
- Spatial tracking data is coming (cf. Basketball) | hope

More on this later ...

Average Shot Probability (ASP)

Even Strength (5v5) ASP, shots faced by away team

(loess smoother for each shot type) Correlation 0910 vs 1011 : $\hat{\rho} = 0.6092$ 1011 vs 1112 : $\hat{\rho} = 0.6928$ 1112 vs 1213 : $\hat{\rho} = 0.4637$

Does it matter? Typical *Max* - *Min* these years 23.5 Goals \approx 4 wins. lockey Analytics

Aichael Schuckers

lockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

 $\begin{array}{l} \mathsf{PDO} = (\mathsf{Team}\;\mathsf{SV\%} + \mathsf{Team}\;\mathsf{SH\%})/100\\ \mathsf{Team}\;\mathsf{SV\%}\;\mathsf{regresses}\;\mathsf{to}\;\mathsf{goalie}(\mathsf{s})\;\mathsf{career}\;\mathsf{SV\%}\\ \mathsf{Team}\;\mathsf{SH\%}\;\mathsf{regresses}\;\mathsf{to}\;\mathsf{league}\;\mathsf{mean}\;\mathsf{SH\%}\\ \mathsf{PDO}\;\mathsf{is}\;\mathsf{generally}\;\mathsf{considered}\;\mathsf{a}\;\mathsf{measure}\;\mathsf{of}\;\mathsf{luck} \end{array}$

PDO Example

Cumulative PDO vs Game, Score Tied, New Jersev and Dallas 1050 1040 1030 1020 1010 a 1000 -NJ PDO -Dal PDO 990 980 970 960 950 30 50 60 70 80 40 90 Game #

source:http://www.arcticicehockey.com/2011/4/11/2103499/ an-abject-lesson-for-dallas-in-the-law-of-averages

Hockey Analytics (©2014 Michael Schuckers)

2014-15 5v5 PDO

lockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

Team	PDO
PIT	103.5
NSH	103.2
LAK	102.4
CGY	102.3
STL	101.6
÷	÷
CAR	97.7
WPG	97.5
EDM	97.4
BUF	97.1
CBJ	96.6

source: stats.hockeyanalysis.com

Context of Events

Player Evaluation:

- ► Where shift starts (Zone Starts- ZS) Move N-Zone to O-Zone ≈ Replace Avg w/ Toews or Crosby
- Quality of Teammates Who with them on the ice (QoT)
- Quality of Competition Who against them on the ice (QoC)
- Score Effects What is current score (Score Effects): Teams that are ahead get better outcomes
- ► Home Ice Better events at home a la Scorecasting

Does QoC matter? Yes (events, shifts) and No (seasons) Scale of these events matter!

lichael Schuckers

Rink Effects

lockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

Joint Work with Brian Macdonald (West Point)

Hockey Analytics (©2014 Michael Schuckers)

NHL's RTSS system has Rink Effects (REs)

 Recording of SHOTs (along with x,y coord's), HITS, GIVE, TAKE, BLOCK, MISS inconsistent from rink to rink

 Noted by many analysts including: Boyle, Zona, Desjardins, McCurdy, Fischer, and Awad. Hockey Analytics Nichael Schuckers

Few Analytical Solutions proposed

- GLOBALLY: Schuckers and Curro (2013) THoR does marginal adjustment across events
- SHOTs (x,y or distance): mean adjustment (SEVERAL), Krzywicki (2010), CDF adjustment (Schuckers & Curro, 2013), PDF adjustment (Thomas & student, ???)
- SHOTS (count): Pfeffer (2014) averaging of SHOT/GOAL ratio
- EVENTs not SHOTS: crickets

lockey Analytics

Aichael Schuckers

General Approach: Schuckers and Macdonald

Log-linear model of 5v5 EV Non-Empty Net events per 3600s, Y Different fit for each year (6 years) Fit using 10-fold cross-validation lasso via glmnet in R

```
ln(Y+\epsilon) = mean effect + rink effect + home ice+ team effect FOR + team effect VS + avg score diff + home*rink ('homer effect')
```

- Ran model for SHOTs, HITs, MISSs, BLOCKs, TAKEs, GIVEs
- Ran also for CORSI, FENWICK, TURNs
- Observational unit is team-game (2 obs per game)

Raw data from nhlscrapr for 2007-8 to 2012-13 Full paper (soon) to JQAS and arXiv lockey Analytics lichael Schuckers

Results

Nichael Schuckers Introduction Rink Effects Player Evaluation

Rink's with significant, persistent problems across ALL of BLOCK, HIT, MISS: EDM, LAK, NJD, TOR OTT significant and persistent in HITs, GIVEs, TAKEs,

Significant & persistent means sum of sign of RE's was ≥ 5 or ≤ -5 across six years.

Atlantic Division

lockey Analytics

Michael Schuckers

Metropolitan Division

Rink Effects Adjustments

lockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

For every event, weight that event by 1/RE for that rink.

RE for HITs in OTT is 1.091 so each HIT is weighted 1/1.091 = 0.917.

Results

Table 1 : Significant Rink Effects for HITS.

Rink	Effect
L.A	1.298
NYR	1.274
PHX	1.163
DAL	1.197
FLA	1.175
TOR	1.132
OTT	1.091
COL	0.848
EDM	0.805
MIN	0.783
CGY	0.639
N.J	0.592
N.J*HOME	1.196
DAL*HOME	1.073
TOR*HOME	0.906

lockey Analytics

Michael Schuckers

HITS

Hockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

Name	Team	Adjusted Hits	Raw Hits	Differential
M Martin	NYI	228.9	234	-5.1
C Neil	OTT	193.4	206	-12.6
S Ott	BUF	182.6	187	-4.4
L Schenn	PHI	181.8	187	-5.2
C Clutterbuck	MIN	181.3	155	26.3
L Smid	EDM	173.0	151	22.0
L Komarov	TOR	169.7	176	-6.3
D Backes	STL	159.9	158	1.9
R Clune	NSH	159.0	159	0.0
M Fraser	TOR	147.7	153	-5.3
E Kane	WPG	143.0	147	-4.0
Z Rinaldo	PHI	140.4	143	-2.6
M Lucic	BOS	137.4	139	-1.6
R Reaves	STL	137.0	135	2.0
D Brown	LAK	136.4	156	-19.6
K Clifford	LAK	135.8	155	-19.2
R Callahan	NYR	132.0	154	-22.0
J Petry	EDM	128.2	112	16.2
B Boyle	NYR	126.9	145	-18.1
D MacKenzie	CBJ	124.2	122	2.2

Table 2 : Adjusted HIT Counts for 2012-13 NHL Regular Season

Hockey Analytics (©2014 Michael Schuckers)

lockey Analytics

Michael Schuckers

Introduction Rink Effects

Player Evaluation

Joint Work with: Dennis Lock (2008), Matt Generous (2009), James Curro (2012), Jake Hurlbut (2015)

Thanks to C.J. Knickerbocker, Ed Harcourt (St. Lawrence U)

Introduction Rink Effects

Player Evaluation

Context of Events (Again)

Player Evaluation:

- ► Where shift starts (Zone Starts- ZS) Move N-Zone to O-Zone ≈ Replace Avg w/ Toews or Crosby
- Quality of Teammates Who with them on the ice (QoT)
- Quality of Competition Who against them on the ice (QoC)
- Score Effects What is current score (Score Effects): Teams that are ahead get better outcomes
- ► Home Ice Better events at home a la Scorecasting

Does QoC matter? Yes (events, shifts) and No (seasons) Scale of these events matter!

Michael Schuckers

Rink Effects
Player Evaluation

lockey Analytics

Michael Schuckers

Introduction Rink Effects

Player Evaluation

REGRESSION

Advanced Player Evaluation

Advanced Models for Skater (Forwards & Defencemen) Evaluation:

- Gramacy, Taddy, Jensen (2013)
- Schuckers and Curro (2013)
- Macdonald (2012)
- Thomas, Ventura, Jensen, Ma (2013)

Burtch (2014)

lockey Analytics

Michael Schuckers

lockey Analytics

Michael Schuckers

Introduction Rink Effects

Questions:

- Response
- Covariates/Predictors
- Model form
- Link function
- Estimation (OLS, Lasso, Ridge)

Total Hockey Ratings

- Response = NP20
- Covariates/Predictors= Yes
- Model form = Linear
- Link function = Identity
- Estimation (OLS, Lasso, Ridge)=Ridge

lockey Analytics

Michael Schuckers

Total Hockey Ratings(THoR)

lockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

 $NP_k = P(Goal \text{ for Home team in next } k \text{ secs after even}) - P(Goal for Away team in next } k \text{ secs after even})$

Exceptions: SHOT and PENL Been using k=20

Hockey Analytics

Michael Schuckers

Introduction

Rink Effects

Player Evaluation

NP_{20}	for	THoR
-----------	-----	------

Event	Shot Type (if relevant)	Location	NP20
SHOT	Backhand	Off	0.1348
SHOT	Wrist	Off	0.1096
SHOT	Slap	Off	0.0697
TURN (to Home Team)		Off	0.0362
FAC		Off	0.0167
MISS	Wrist	Off	0.0159
HIT (by Home)		Off	0.0039
FAC		Neu	0.0026
HIT (by Home)		Neu	-0.0008
TURN (to Home Team)		Neu	0.0264
FAC		Def	0.0005
HIT (by Home)		Def	-0.0060

THoR

Terms in model:

- Home Ice
- Rink Effect
- Zone Start
- Score Effect
- Home Players
- Away Players
- PP, PK & interactions

lockey Analytics

Michael Schuckers

Introduction Rink Effects

THoR Validity

lockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

Probability of Winning Given Out ___ Your Opponent Data from 2009 to 2013

Conditions	THoR	Corsi	Fenwick	Shots
5v5	0.519	0.530	0.461	0.406
5v5 within 2	0.537	0.568	0.520	0.452
5v5 within 1	0.573	0.591	0.580	0.493
5v5 tied	0.589	0.607	0.620	0.538

THoR Reliability

lockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

Year to Year Corr Player Ratings					
from 2009 to 2014 Seasons					
Model	1 Yr	2 Yr	3 Yr		
Adj Fenwick	0.47	0.41	0.41		
Adj Corsi	0.33	0.32	0.28		
THoR	0.80	0.76	0.77		

Using THoR Model with Corsi and Fenwick as 1,-1 response

Top 10 Total Value 2011-14

Adjusted Corsi:

PBergeron, CKunitz, JWilliams, JBoychuk, MGiordano, PDatsyuk, PHornqvist, SWeber, DSedin, JGorges

Adjusted Fenwick:

JWilliams, DSedin, PDatsyuk, PBergeron, ASteen, PHornqvist, JThornton, LCouture, EKarlsson, GLandeskog

THoR:

AKopitar, BRichards, EKarlsson, AOvechkin, JThornton, MDuchene, PBergeron, EStaal, DSedin, JEberle

None of these include SH%

lockey Analytics

Aichael Schuckers

Trends

Recent

- Microstat Tracking
- Regression
- Adjust for more factors

Future

- New Data (SportVU), likely proprietary
- Will Be Smooth & Multivariate
- More Regression
- Adjust for more factors
- Is Here

Hockey Analytics

Michael Schuckers

Introduction Rink Effects

lockey Analytics

Michael Schuckers

Introduction Rink Effects Player Evaluation

Thank You

schuckers@stlawu.edu

Hockey Analytics (©2014 Michael Schuckers)

Links

- http://www.habseyesontheprize.com/2013/2/20/ 4005122/how-reliable-is-the-nhl-com-shot-tracker
- http://www.coppernblue.com/2011/10/17/2495447/ dear-oilers-find-new-official-scorers
- http://www.arcticicehockey.com/2010/10/18/ 1756880/clean-up-your-act-madison-square-garden
- http://www.coppernblue.com/2010/3/30/1396334/ rtss-stats-giveaways-takeaways-and
- http://www.inlouwetrust.com/2010/7/8/1559914/ blocked-shots-the-new-jersey
- http://www.puckprospectus.com/article.php? articleid=351

Alahaal Cahuaham