Hockey in Space!

Characterizing team-wise differences in shot locations with spatial point processes

Devan Becker The University of Western Ontario dbecker7@uwo.ca

September 16, 2018

Hockey	in	Spacel	
TIOCKCy		Space.	

- Introduction

Introduction

The Data

2017-2018 Season Shot Locations

All Shots, Detroit

All Shots, Tampa Bay

2017-2018 Season Shot Hexbins

Coordinate system already present. Adding new coordinate
Coordinate system already present. Adding new coordinate

All Shots, Detroit

Devan Becker

University of Western Ontario

2017-2018 Season Shot Density

Shot Density, Detroit

Shot Density, Tampa Bay

Objective

Fit a parametric statistical model to determine:

- Where do different teams shoot from?
- Are the patterns consistent? (Variance!)
- Which shots go in?
- What can goalies expect?

Log-Gaussian Cox Processes (Yay math!)

$$\log(\Lambda(x,y)) = \mu + \beta C(x,y) + S(x,y)$$

The log of the rate of points in a given location is modelled as an intercept plus a spatial covariate plus a random process.

Log-Gaussian Cox Processes (Yay math!)

$$\log(\Lambda(x,y)) = \mu + \beta C(x,y) + S(x,y)$$

The log of the rate of points in a given location is modelled as an intercept plus a spatial covariate plus a random process.

- "Random" doesn't mean unstructured!
- The random process is a smooth function based on the normal distribution.

Variance and Clustering (Simulated)

Low Variance, Small Clusters

Low Variance, Large Clusters

Diff

High Variance, Small Clusters

High Variance, Large Clusters

League Average as a Spatial Covariate

Density Estimate - 2017/2018 Season

League Average as a Spatial Covariate

Our interpretation becomes:

$$\log(\Lambda(x,y)) = \mu + C(x,y) + S(x,y)$$

The log of the rate of shots is modelled as an intercept plus the league average plus a team specific deviation.

League Average as a Spatial Covariate

Our interpretation becomes:

$$\log(\Lambda(x,y)) = \mu + C(x,y) + S(x,y)$$

The log of the rate of shots is modelled as an intercept plus the league average plus a team specific deviation.

- S(x, y) can be seen as the *intended* strategy difference.
- The variance and range illustrate the team's *consistency*.

Estimation of LGCP

Estimation of LGCP

oh no

		~	
Hocke	v in	Sp	acel

Results

Results

Results

Random Processes - S(x,y)

Diff. from League - Detroit

Diff. from League - Tampa Bay

Variance at Every Location

SD - Detroit

SD - Tampa Bay

SD 0.15 0.20 0.25

All Results - Shiny App

Team 1

Hockey in Space!

Shot Density, DET

DET		•
Data		

Density •

Shot Density, TBL

Shot Density				
	0.5	1.0	1.5	2.0

т	ъ		m	2
	-	u	••	-

TBL 💌

Team Colours

WPG -

Devan Becker

University of Western Ontario

Limitations

- Differences from league are often minor
- One dense cluster means small clusters estimated everywhere
- Needs a lot of data
 - Can't just look at one team's goals

Final Notes

Conclusions

- This method can indicate the manifested strategy
- Variance and cluster size indicate a teams consistency
 - Careful interpretation

Future Work

- Different play types (e.g. first shot after possession)
- Statistical comparison of teams
- Spatially varying range parameter
- All the things that the audience suggests

Acknowledgments

Thank you to my supervisors: Doug Woolford, Charmaine Dean, and W. John Braun

Thanks for funding:

Canadian Statistical Sciences Institute Institut canadien des sciences statistiques

Thanks for listening! Any further questions: dbecker7@uwo.ca