
Can Skaters Impact Goaltending Metrics?

By CJ Turtoro

- According to <u>Alex Novet's merged data</u> from NHL pbp and Sznajder's tracking...
 - Of 337 skaters with 500+ FA tracked, Seabrook allowed the 16th most dangerous average shot with a xFSh% of 6.14
 - When we incorporated our tracking data, the xFSh% went down to 5.88% and his shots became the 87th most dangerous
 - He had the 44th largest shift in average shot danger when moving from public pbp data to Sznajder's tracking data

 Entering 2019, Brent Seabrook's career, had been *reliably* getting better "goals against" impacts than "expected goals against" impacts.

 Seabrook was the league's worst even-strength defender (+0.226 xGA/60) in terms of RAPM xGA.

 But he was slightly better than neutral (-0.018 xGA/60) in RAPM GA

Season	GP	TOI	GA/60	xGA/60	xGA	/60 - GA/60
2008	81	1289.13	-0.033	-0.064		-0.031
2009	82	1412.38	-0.074	-0.068		0.006
2010	78	1441.5	-0.01	-0.054		-0.044
2011	82	1538.3	0.025	-0.096		-0.121
2012	78	1520.42	0.05	-0.082		-0.132
2013	47	811.97	-0.014	0.087		0.101
2014	82	1481.78	0.054	0.001		-0.053
2015	82	1441.62	0.022	0.094		0.072
2016	81	1424.1	0	0.337		0.337
2017	79	1329.15	0.016	0.187		0.171
2018	81	1253.77	-0.075	0.141		0.216
2019	78	1171.93	0.055	0.179		0.124
2020	32	503.1	-0.062	0.133		0.195

#1 differential in the NHL

The "Crawford Effect"?

Corey Crawford was the #2 goalie in the NHL during that 2015-2018 stretch by GSAx

Season	GP	TOI	GA/60	xGA/60	xGA/	/60 - GA/60	Crawford	d GSAx
2008	81	1289.13	-0.033	-0.064		-0.031		
2009	82	1412.38	-0.074	-0.068		0.006		
2010	78	1441.5	-0.01	-0.054		-0.044		
2011	82	1538.3	0.025	-0.096		-0.121		7.7
2012	78	1520.42	0.05	-0.082		-0.132		-20.04
2013	47	811.97	-0.014	0.087		0.101		7.1
2014	82	1481.78	0.054	0.001		-0.053		-2.55
2015	82	1441.62	0.022	0.094		0.072		8.6
2016	81	1424.1	0	0.337		0.337		21.65
2017	79	1329.15	0.016	0.187		0.171		10.21
2018	81	1253.77	-0.075	0.141		0.216		13.8
2019	78	1171.93	0.055	0.179		0.124		1.11
2020	32	503.1	-0.062	0.133		0.195		7.44

- If the "Crawford Effect" exists, it's suspiciously absent for the other Chicago defencemen *nearly* this size discrepancy.
- In fact, removing Seabrook, the Chicago blueline actually allowed .02 more goals per hour than expected.

Player	Season	TOI	GA/60	xGA/60	xGA/60 - GA/60
Brent Seabrook	15-18	4007.02	-0.018	0.226	0.244
Brian Campbell	16-17	1325.88	-0.075	0.059	0.134
Gustav Forsling	16-18	1144.62	0.017	0.139	0.122
Duncan Keith	15-18	4316.98	0.002	0.101	0.099
David Rundblad	15-16	109.47	-0.034	0.057	0.091
Michal Rozsival	15-17	1069.9	-0.003	0.068	0.071
Trevor Daley	15-16	374.38	-0.015	0.038	0.053
Viktor Svedberg	15-16	392.62	0.055	0.093	0.038
Erik Gustafsson (D)	15-18	1138.4	0.002	0.037	0.035
Blake Hillman	17-18	65.63	-0.019	0.007	0.026
Christian Ehrhoff	15-16	124.18	0.006	0.006	0
Cody Franson	17-18	325.08	-0.083	-0.094	- <mark>0</mark> .011
Carl Dahlstrom	17-18	175.53	0.066	0.052	- <mark>0.</mark> 014
Jan Rutta	17-18	927.52	0.071	0.042	-0.029
Connor Murphy	17-18	1142.02	-0.03	-0.067	- <mark>0.</mark> 037
Rob Scuderi	15-16	184.8	0.057	0.02	- <mark>0</mark> .037
Johnny Oduya	16-17	246.42	-0.028	-0.083	<u>-0</u> .055
Michal Kempny	16-18	1143.7	-0.042	-0.179	<u>-0</u> .137
Trevor Van Riemsdyk	15-17	2405.42	0.007	-0.135	-0 .142
Jordan Oesterle	17-18	1013.97	0.094	-0.066	<u>-0</u> .16
Niklas Hjalmarsson	15-17	2869.7	-0.021	-0.22	<mark>-0</mark> 199

Seabrook improved in this "skill" of limiting GAs from xGAs even in games in which Crawford wasn't playing.

	Toge	ther	Just Sea	abrook	Just Cra	wford		G	SAx pe	er 100 x	G	
Season	xGA	GA	xGA	GA	xGA	GA	Crav	vford	Seak	rook	Tog	ether
20102011	35.74	41	19.34	25	58.96	55		6.7		-29.3	38	-14.7
20112012	35.14	41	21.23	27	61.24	66		-7.8		-27.2		-16.7
20122013	16.98	14	13.22	13	30.98	28		9.6		1.7		17.6
20132014	35.69	36	21.41	28	57.42	58		-1.0		-30.8		-0.9
20142015	40.68	40	22.84	18	66.25	58		12.5		21.2		1.7
20152016	42.39	31	25.24	26	70.33	64		9.0		-3.0		26.9
20162017	39.4	36	25.57	22	68.89	64		7.1		14.0		8.6
20172018	17.32	11	46.23	50	36.78	34		7.6		-8.2		36.5
20182019	27.44	29	34.54	30	53.13	56		-5.4		13.1		-5.7
20192020	13.81	10	12.71	9	74.85	72		3.8		29.2		27.6

Who Gets Credit for the Defensive Overachievement?

- Use 3 years of player's GSAx (dGA/60) for predict year 4 (Marcel borrowed from Tom Tango)

 Add up the roster TOIs of year 4 and apply a weighted average of the rosters' predicted GSAxs to get team-level estimates

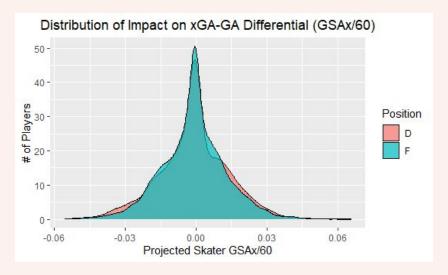
- Use 3 years of goalie's GSAx (dGA/60) for predict year 4

 Compare the goalie model vs the skater-roster model in ability to predict year 4 goalie performance


Gaps between xGA and GA RAPMs are "repeatable"

- Previous year has t-value of 11.6 (highly significant) in predicting current year RAPM gap.
- In total, about 1.8% of the variance can be "explained" by 3-year skater history.

```
Call:
lm(formula = 'Year 4' ~ 'Year 1' + 'Year 2' + 'Year 3', data = skater_rapms,
   weights = TOI)
Weighted Residuals:
     Min
              10 Median
-12.5059 -1.0644 -0.0129 1.0267 13.5888
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0004843 0.0008471 -0.572
 Year 1
            0.0774180 0.0114697 6.750 1.54e-11
 Year 2
            0.0701312 0.0102539 6.839 8.27e-12
            0.1066327 0.0092156 11.571 < 2e-16 ***
 Year 3
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.444 on 14345 degrees of freedom
Multiple R-squared: 0.01809, Adjusted R-squared: 0.01788
F-statistic: 88.07 on 3 and 14345 DF, p-value: < 2.2e-16
```


Gaps between xGA and GA RAPMs are "repeatable"

- Some consistency in a player's ability have defensive goal impacts over/underachieve their defensive xG impacts.
- Relatively small (correlation of +0.114)
- Limited range the IQR of the predicted values (0.011) is about a tenth the size of the true numbers (0.103)

Gaps between xGA and GA RAPMs are "repeatable"

- The range of impacts for defenders is *slightly* (though, negligibly) wider than that of forwards.
- We'd expect a bigger difference between positions, so lurking goaltender or team impact seems likely.

Comparing Skater GSAx to Goalie GSAx

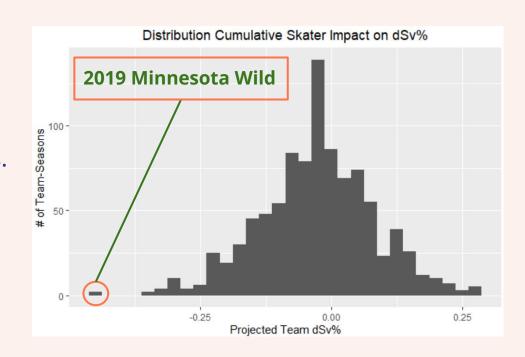
Marcel projection for goaltenders has slightly *lower* adjusted r-squared than skaters (1.4% vs 1.8%)

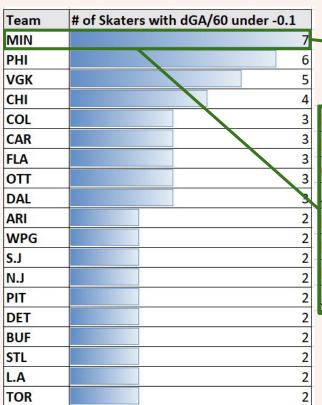
```
Call:
lm(formula = 'Year 4' ~ 'Year 1' + 'Year 2' + 'Year 3', data = gdf_time,
   weights = TOI)
Weighted Residuals:
              10 Median
    Min
                               30
                                      Max
-115.070 -24.486 -2.313 18.130
                                   93.154
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.059639  0.025959  -2.297  0.02174 *
 Year 1 0.006485 0.019625 0.330 0.74111
 Year 2 0.052079 0.021447 2.428 0.01529 *
 Year 3 0.078672 0.020697 3.801 0.00015 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 32.22 on 1441 degrees of freedom
Multiple R-squared: 0.01586, Adjusted R-squared: 0.01381
F-statistic: 7.739 on 3 and 1441 DF, p-value: 3.964e-05
```

Comparing Skater GSAx to Goalie GSAx

```
Estimate Std. Error t value Pr(>|t|)

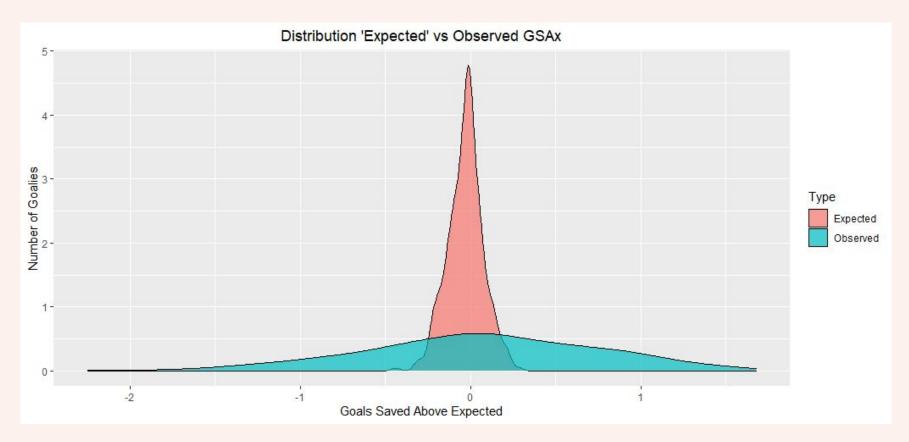
`goalie-based_proj` 0.7983 0.1773 4.503 7.24e-06 ***


`skater-based_proj` 5.7024 1.2988 4.391 1.21e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Residual standard error: 31.99 on 1443 degrees of freedom
Multiple R-squared: 0.03567, Adjusted R-squared: 0.03433
F-statistic: 26.69 on 2 and 1443 DF, p-value: 4.153e-12
```

If we try to predict a goalie's dSv% using the skater-based GSAx/60 Marcel projection AND the goalie-based dSv% Marcel projection, BOTH are significant predictors!

 In the distribution of team-level cumulative skater impacts, ~90% of team-seasons are in the -0.2 to +0.2 range of dSv% impacts.


 That's a difference of 1 GSAx every 250 shots between the 5th and 95th percentiles.

4	p.		rs.	EC.	po o		
Player	Season	Position	GP	TOI	GA/60	xGA/60	dGA/60
Marcus Foligno	17-19	L	159	1632.47	-0.068	-0.264	-0.196
Greg Pateryn	18-19	D	80	1218.17	-0.018	-0.199	-0.181
Jonas Brodin	16-19	D	223	3892.77	-0.029	-0.156	-0.127
Mikko Koivu	16-19	С	210	2925.3	-0.103	-0.23	-0.127
Ryan Suter	16-19	D	242	5005.58	0.002	-0.107	-0.109
Marco Scandella	16-17	D	71	1144.27	0.134	0.031	-0.103
Jared Spurgeon	16-19	D	219	4135.2	-0.031	-0.132	-0.101
		·		·		·	

*Skaters on one team could all benefit from rink bias

Pla	yer \$	GP	‡	dSv	\$	Player	GP ‡	
A	lex Nedeljkovic		23	1.55	1	Alex Nedeljkovic	23	Ī
	Juuse Saros		36	1.39	2	Juuse Saros	36	
	Chris Driedger		23	1.24	3	Marc-Andre Fleury	36	
	Marc-Andre Fleury		36	1.08	4	Chris Driedger	23	
	Andrei Vasilevskiy		42	0.87	5	Andrei Vasilevskiy	42	
	Connor Hellebuyck		45	0.83	6	Connor Hellebuyck	45	
	Thatcher Demko		35	0.75	7	Thatcher Demko	35	
i	Igor Shesterkin		35	0.68	8	Semyon Varlamov	36	
	Semyon Varlamov		36	0.59	9	Jack Campbell	22	
	Jack Campbell		22	0.51	10	Igor Shesterkin	35	

Big Takeaways

- 1) Skaters seem to exhibit repeatable defensive over- and under-achievement in terms of their defensive expected goal impacts.
- When summed up at the team-level and placed into a model with goaltender predictions, the team-level predictions retain statistical significance comparable to that of the goalies
- 3) The differentials are minor, worth only about 1 goal every ~10 games in even the most extreme cases.

Where From Here?

1) Improved Data

- a) Game- or shift-level rosters, not season-level
- b) Use per-shot data for skaters rather than per60
- c) Use rink-adjustments
- d) Include goalies in directly in impact models like RAPMs
- e) Include skaters in impact on goal odds similar to goalies

2) Improved Models

- a) Bayesian posterior calculation at player-level
- b) More years / recency weighting
- c) Split forwards / defenders